Ex. 3.30
Ex. 3.30
Consider the elastic-net optimization problem:
\[\begin{equation}
\min_\beta \|\by-\bX\beta\|^2 + \lambda\left[\alpha \|\beta\|_2^2 + (1-\alpha)\|\beta\|_1\right].\non
\end{equation}\]
Show how one can turn this into a lasso problem, using an augmented version of \(\bX\) and \(\by\).
Soln. 3.30
Assume \(\by\in\mathbb{R}^{N\times 1}\), \(\bX\in\mathbb{R}^{N\times (p+1)}\) and \(\beta\in\mathbb{R}^{(p+1)\times 1}\). We first augment \(\bX\) by
\[\begin{equation}
\tilde\bX = \begin{pmatrix}
\bX\\
\gamma \bb{I}_{p+1}
\end{pmatrix}\in \mathbb{R}^{(N+p+1)\times (p+1)}\non
\end{equation}\]
for \(\gamma > 0\). Then we augment \(\by\) by
\[\begin{equation}
\tilde \by = \begin{pmatrix}
\by\\
\bb{0}_{p+1}
\end{pmatrix}\in\mathbb{R}^{(N+p+1)\times 1}.\non
\end{equation}\]
Then we have
\[\begin{equation}
\|\tilde \by - \tilde\bX\beta\|_2^2 = \left\|\begin{pmatrix}
\by-\bX\beta\\
\gamma\beta
\end{pmatrix}\right\|_2^2 = \|\by-\bX\beta\|_2^2 + \gamma^2\|\beta\|_2^2.\non
\end{equation}\]
So consider the lasso problem for \((\tilde\by, \tilde\bX)\)
\[\begin{equation}
\min_{\beta} \|\tilde \by - \tilde\bX\beta\|_2^2 + \delta\|\beta\|_1,\non
\end{equation}\]
which is essentially
\[\begin{equation}
\min_{\beta}\|\by-\bX\beta\|_2^2 + \gamma^2\|\beta\|_2^2 + \delta\|\beta\|_1.\non
\end{equation}\]
By choosing \(\gamma = \sqrt{\lambda\alpha}\) and \(\delta = \lambda(1-\alpha)\) we get the original elastic-net problem.
Remark
This exercise is similar to Ex. 3.12.