Ex. 4.1
Ex. 4.1
Show how to solve the generalized eigenvalue problem \(a^T\textbf{B}a\) subject to \(a^T\textbf{W}a = 1\) by transforming to a standard eigenvalue problem.
Soln. 4.1
We are solving a constraint optimization problem
\[\begin{eqnarray}
&&\max_{a} a^T\textbf{B}a\nonumber\\
\text{s.t.} && a^T\textbf{W}a = 1.\nonumber
\end{eqnarray}\]
The Lagrangian multiplier is
\[\begin{equation}
L(a,\lambda) = a^T\textbf{B}a - \lambda(a^T\textbf{W}a-1).\nonumber
\end{equation}\]
Taking partial derivative w.r.t \(a\) and setting it to be zero we get
\[\begin{equation}
\frac{\partial L(a, \lambda)}{\partial a} = 2\textbf{B}a + \lambda(2\textbf{W}a)=0,\nonumber
\end{equation}\]
which is equivalent to
\[\begin{equation}
\label{eq:ex41eigen}
\textbf{W}^{-1}\textbf{B}a = \lambda a.
\end{equation}\]
Now it's easy to see that \(\eqref{eq:ex41eigen}\) is a standard eigenvalue problem.