Ex. 5.11
Ex. 5.11
Prove that for a smoothing spline the null space of \(\bb{K}\) is spanned by functions linear in \(X\).
Soln. 5.11
First recall the definition of \(\bm{\Omega}_N\) is
\[\begin{equation}
\{\bm{\Omega}_N\}_{jk} = \int N''_j(t)N''_k(t)dt.\non
\end{equation}\]
Since \(N_1 =1\) and \(N_2 = x\), both have vanished second order derivative, thus we have
\[\begin{equation}
\bm{\Omega}_N = \begin{pmatrix}
0& 0&\cdots&0\\
0& 0&\cdots&0\\
\vdots & \vdots &\ddots &\vdots\\
0& 0&\cdots& \int N''_N(t)N''Nk(t)dt
\end{pmatrix}.\non
\end{equation}\]
Thus, for any \(x^T=(c_1, c_2x, 0,...,0)\) where \(c_1\) and \(c_2\) are constants, it's easy to show that
\[\begin{equation}
\bm{\Omega}_N\bb{N}^{-1}x = \bb{0}\non
\end{equation}\]
so that
\[\begin{equation}
\bb{K}x=\bb{0}.\non
\end{equation}\]