Ex. 6.12
Ex. 6.12
Write a computer program to perform a local linear discriminant analysis. At each query point \(x_0\), the training data receive weights \(K_\lambda(x_0, x_i)\) from a weighted kernel, and the ingredients for the linear decision boundaries (see Section 4.3) are computed by weighted averages. Try out your program on the zipcode data, and show the training and test errors for a series of five pre-chosen values of \(\lambda\). The zipcode data are available from the book website.
Soln. 6.12
We choose RBF kernel
with five different choices of \(\lambda \in\{ 0.001, 0.01, 0.05, 0.1, 1\}\).
The linear discriminant function is defined as (see (4.10) in the text)
in which we estimate unknown parameters as
We summarize training and test error rates in Table 1 below.
TODO
rerun the script to update the numbers in the table
Model | Train Error Rate | Test Error Rate |
---|---|---|
LDA | 6.20% | 11.45% |
QDA | 7.71% | 18.19% |
Local LDA (\(\lambda = 0.001\)) | 0.0% | 11.11% |
Local LDA (\(\lambda = 0.01\)) | 0.5% | 3.0% |
Local LDA (\(\lambda = 0.1\)) | 0.65% | 3.30% |
Local LDA (\(\lambda = 1\)) | 0.94% | 3.85% |
Code: 6.12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
|
Code: LocalLDA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|