Ex. 7.5
Ex. 7.5
For a linear smoother \(\hat{\mathbf{y}} = \bb{S}\bb{y}\), show that
\[\begin{equation}
\sum_{i=1}^N\text{Cov}(\hat y_i, y_i) = \text{trace}(\bb{S})\sigma_\epsilon^2,\non
\end{equation}\]
which justifies its use as the effective number of parameters.
Soln. 7.5
\[\begin{eqnarray}
\sum_{i=1}^N\text{Cov}(\hat y_i, y_i) &=& \text{trace}(\text{Cov}(\hat{\mathbf{y}}, \bb{y}))\non\\
&=&\text{trace}(\text{Cov}(\bb{S}\bb{y}, \bb{y}))\non\\
&=&\text{trace}(\bb{S}\text{Cov}(\bb{y}, \bb{y}))\non\\
&=&\text{trace}(\bb{S}\text{Var}(\bb{y}))\non\\
&=&\text{trace}(\bb{S})\sigma_\epsilon^2.\non
\end{eqnarray}\]
Remark
This exercise is similar to Ex. 7.1.