Ex. 8.1
Ex. 8.1
Let \(r(y)\) and \(q(y)\) be the probability density functions. Jensen's inequality states that for a random variable \(X\) and a convex function \(\phi(x)\), \(E[\phi(x)]\ge \phi(E[X])\). Use Jensen's inequality to show that
\[\begin{equation}
E_q\log[r(Y)/q(Y)]\non
\end{equation}\]
is maximized as a function of \(r(y)\) when \(r(y) = q(y)\). Hence show that \(R(\theta, \theta)\ge R(\theta', \theta)\) as stated below equation (8.46).
Soln. 8.1
Note that \(-\log(x)\) is convex, by Jensen's inequality, we have
\[\begin{eqnarray}
E_q[-\log[r(Y)/q(Y)]] &\ge& -\log[E_q[r(Y)/q(Y)]]\non\\
&=&-\log\left[\int\frac{r(y)}{q(y)}q(y)dy\right]\non\\
&=&-\log\left[\int r(y)dy\right]\non\\
&=&-\log(1)\non\\
&=&0,\non
\end{eqnarray}\]
therefore we have
\[\begin{equation}
E_q[\log(r(Y)/q(Y))]\le 0 = E_q[\log(q(Y)/q(Y))].\non
\end{equation}\]
So the expectation is maximized when \(r = q\).
For equation (8.46) in the text, we have
\[\begin{eqnarray}
R(\theta', \theta) - R(\theta, \theta) &=& E[\ell_1(\theta;\bb{Z}^m|\bb{Z})|\bb{Z}, \theta] - E[\ell(\theta;\bb{Z}^m|\bb{Z})|\bb{Z}, \theta]\non\\
&=&E_{\text{Pr}(\bb{Z}^m|\bb{Z}, \theta)}\left(\log \frac{\text{Pr}(\bb{Z}^m|\bb{Z}, \theta')}{\text{Pr}(\bb{Z}^m|\bb{Z}, \theta)}\right)\non\\
&\le&0.\non
\end{eqnarray}\]