Ex. 10.2
Ex. 10.2
Prove result (10.16), that is, the minimizer of the population version of the AdaBoost criterion, is one-half of the log odds.
Soln. 10.2
We are looking for
\[\begin{equation}
\underset{f(x)}{\operatorname{argmin}}E_{Y|x}(e^{-Yf(x)})\non
\end{equation}\]
where \(Y\in \{1, -1\}\).
Denoting \(z = f(x)\), we have
\[\begin{equation}
\underset{z}{\operatorname{argmin}}P(Y=1|x)e^{-z} + P(Y=-1|x)e^{z}\non
\end{equation}\]
Similarly as Ex. 10.1, we take derivative w.r.t. \(z\) and set it to 0
\[\begin{equation}
P(Y=1|x)e^{-z} + P(Y=-1|x)e^{z} = 0.\non
\end{equation}\]
Solving for \(z = f(x)\) we get
\[\begin{equation}
f(x) = \frac{1}{2}\log{\frac{P(Y=1|x)}{P(Y=-1|x)}},\non
\end{equation}\]
that is, one-half of the log odds.