Ex. 10.3
Ex. 10.3
Show that the marginal average (10.47) recovers additive and multiplicative functions (10.50) and (10.51), while the conditional expectation (10.49) does not.
Soln. 10.3
The marginal average (10.47) is defined as
\[\begin{equation}
f_S(X_S) = E_{X_C}f(X_S, X_C).\non
\end{equation}\]
Note that it's different from the conditional expectation (10.49)
\[\begin{equation}
\label{eq:10cond}
\tilde f_X(X_S) = E[f(X_S, X_C)|X_S].
\end{equation}\]
Assuming the marginal density for \(X_C\) is \(\phi\). When \(f(X) = h_1(X_S) + h_2(X_C)\), we have
\[\begin{eqnarray}
f_S(X_S) &=& \int f(X_S, c)\phi(c)dc\non\\
&=&\int [h_1(X_S) + h_2(c)]\phi(c)dc\non\\
&=&\int h_1(X_S)\phi(c)dc + \int h_2(c)\phi(c)dc\non\\
&=&h_1(X_S)\int\phi(c)dc + \int h_2(c)\phi(c)dc\non\\
&=&h_1(X_S) + \int h_2(c)\phi(c)dc\non
\end{eqnarray}\]
where the last equation comes by noting \(\int \phi(c)dc = 1\). Similar arguments apply to \(f(X) = h_1(X_S)\cdot h_2(X_C)\).
However for the conditional expectation \(\eqref{eq:10cond}\), when \(f(X) = h_1(X_S) + h_2(X_C)\) we get
\[\begin{equation}
\tilde f_S(X_S) = h_1(X_S) + E[h_2(X_C)|X_S].\non
\end{equation}\]
When \(f(X) = h_1(X_S)\cdot h_2(X_C)\), we get
\[\begin{equation}
\tilde f_S(X_S) = h_1(X_S)\cdot E[h_2(X_C)|X_S].\non
\end{equation}\]