Ex. 12.2
Ex. 12.2
Show that the solution to (12.29) is the same as the solution to (12.25) for a particular kernel.
Soln. 12.2
Define the kernel \(K\) by \(K(x,y) := h(x)^Th(y)\) for any \(x, y\in \mathbb{R}^p\).
Let \(\beta = \sum_{i=1}^N\alpha_ih(x_i)\), then (12.28) in the text reduces to
\[\begin{eqnarray}
f(x) &=& \beta_0 + \sum_{i=1}^N\alpha_ih(x)^Th(x_i)\non\\
&=&\beta_0 + h(x)^T\sum_{i=1}^N\alpha_ih(x_i)\non\\
&=&\beta_0 + h(x)^T\beta.\non
\end{eqnarray}\]
Further note that
\[\begin{eqnarray}
\|\beta\|^2 &=& \beta^T\beta\non\\
&=&\left(\sum_{i=1}^N\alpha_ih(x_i)\right)^T\left(\sum_{i=1}^N\alpha_ih(x_i)\right)\non\\
&=&\sum_{i=1}^N\sum_{j=1}^N\alpha_i\alpha_jK(x_i, x_j)\non\\
&=&\alpha^TK\alpha.\non
\end{eqnarray}\]
Therefore, the solution to (12.29) is the same as the solution to (12.25).