Ex. 14.19
Ex. 14.19
If \(\bA\) is \(p\times p\) orthogonal, show that the first term in (14.92) on page 568
\[\begin{equation}
\sum_{j=1}^p\sum_{i=1}^N\log(\phi(a_j^Tx_i)),\non
\end{equation}\]
with \(a_j\) the \(j\)th column of \(\bA\), does not depend on \(\bA\).
Soln. 14.19
Since \(\bb{A}\) is orthogonal, we have
\[\begin{eqnarray}
\sum_{j=1}^p\sum_{i=1}^N\log(\phi(a_j^Tx_i)) &=& \sum_{i=1}^N\sum_{j=1}^p\log(\phi(a_j^Tx_i))\non\\
&=&\sum_{i=1}^N(2\pi)^{-p/2}e^{-x_i^T\bb{A}\bb{A}^Tx_2/2}\non\\
&=&(2\pi)^{-p/2}\sum_{i=1}^Ne^{-x_i^Tx_2/2}\non
\end{eqnarray}\]
does not depend on \(\bb{A}\).