Ex. 14.24

Ex. 14.24

Consider the non-negative matrix factorization (14.72) in the rank one case (r=1).

(a) Show that the updates (14.74) reduce to

wiwij=1pxijj=1pwihjhjhji=1Nxiji=1Nwihj

where wi=wi1,hj=h1j. This is an example of the iterative proportional scaling procedure, applied to the independence model for a two-way contingency table (Fienberg, 1977, for example.)

(b) Show that the final iterates have the explicit form

wi=cj=1pxiji=1Nj=1pxij,  hk=1ci=1Nxiki=1Nj=1pxij

for any constant c>0. These are equivalent to the usual row and column estimates for a two-way independence model.

Soln. 14.24

(a) When r=1, (WH)ij=wihj, therefore (14.74) becomes

wiwij=1phjxij/wihjj=1phj=wij=1pxijj=1pwihj.

Similar arguments apply to hj with

hjhji=1Nxiji=1Nwihj.

(b) From (a) we know that, in the final iterates, plug the update formula for hj into wi we get

wij=1pxijj=1phj=j=1pxijj=1pi=1Nxiji=1Nwi=i=1Nwij=1pxijj=1pi=1Nxij=cj=1pxijj=1pi=1Nxij,

where c>0 could be any constant. Similar arguments apply to hk.