Ex. 15.1
Ex. 15.1
Derive the variance formula (15.1). This appears to fail if \(\rho\) is negative; diagnose the problem in this case.
Soln. 15.1
We have
\[\begin{eqnarray}
\text{Var}\left(\frac{\sum_{i=1}^BX_i}{B}\right) &=&\frac{1}{B^2}\sum_{i=1}^B\text{Var}(X_i) + \frac{1}{B^2}\sum_{i\neq j}^B\text{Cov}(X_i, X_j)\non\\
&=&\frac{\sigma^2}{B} + \frac{B-1}{B}\sigma^2\rho\non\\
&=&\sigma^2\rho + \frac{1-\rho}{B}\sigma^2.\non
\end{eqnarray}\]
The assumption implicitly assumes that \(\rho \ge -\frac{1}{B-1}\) by noting the variance above is non-negative. When \(B\) is large, this (negative) lower bound is close to zero.