Ex. 17.4

Ex. 17.4

Denote by \(f(X_1|X_2, X_3,...,X_p)\) the conditional density of \(X_1\) given \(X_2, X_3,...,X_p\). If

\[\begin{equation} f(X_1|X_2,X_3,...,X_p) = f(X_1|X_3,...,X_p),\non \end{equation}\]

show that \(X_1\bot X_2|X_3,...,X_p\).

Soln. 17.4

It's easy to see that

\[\begin{eqnarray} f(X_1, X_2|X_3,...,X_p) &=& f(X_1|X_2,X_3,...,X_p) f(X_2|X_3,...,X_p)\non\\ &=&f(X_1|X_3,...,X_p)f(X_2|X_3,...,X_p).\non \end{eqnarray}\]

Therefore we have \(X_1\bot X_2|X_3,...,X_p\).