Ex. 18.18
Ex. 18.18
Use result (18.53) to show that
\[\begin{equation}
\text{pFDR} = \frac{\pi_0\cdot \{\text{Type I error of } \Gamma\} }{\pi_0\cdot \{\text{Type I error of } \Gamma\} + \pi_1\cdot\{\text{Power of }\Gamma\}}\non
\end{equation}\]
(Storey, 2003 \cite{storey2003positive}).
Soln. 18.18
From (18.53) in the text we obtain
\[\begin{eqnarray}
\text{pFDR}(\Gamma) &=& \text{Pr}(Z_j=0|t_j\in \Gamma)\non\\
&=&\frac{\pi_0\cdot\text{Pr}(t_j\in \Gamma|Z_j=0)}{\pi_0\cdot\text{Pr}(t_j\in \Gamma|Z_j=0) + \pi_1\cdot\text{Pr}(t_j\in \Gamma|Z_j=1)}\non\\
&=&\frac{\pi_0\cdot \{\text{Type I error of } \Gamma\} }{\pi_0\cdot \{\text{Type I error of } \Gamma\} + \pi_1\cdot\{\text{Power of }\Gamma\}}.\non
\end{eqnarray}\]