Ex. 18.20
Ex. 18.20
Proof of result (18.53). Write
\[\begin{eqnarray}
\text{pFDR} &=& E\left(\frac{V}{R}|R > 0\right)\non\\
&=&\sum_{k=1}^ME\left[\frac{V}{R}|R=k\right]\text{Pr}(R=k|R > 0)\non
\end{eqnarray}\]
Use the fact that given \(R=k\), \(V\) is a binomial random variable, with \(k\) trials and probability of success \(\text{Pr}(H=0|T\in \Gamma)\), to complete the proof.
Soln. 18.20
Note that given \(R=k\), \(V\) is a binomial random variable, with \(k\) trials and probability of success \(\text{Pr}(H=0|T\in \Gamma)\), we have
\[\begin{equation}
E[V|R=k] = k \cdot \text{Pr}(H=0|T\in \Gamma).\non
\end{equation}\]
Therefore,
\[\begin{eqnarray}
\text{pFDR}(\Gamma) &=&\sum_{k=1}^M\frac{1}{k} \cdot k \cdot \text{Pr}(H=0|T\in \Gamma)\text{Pr}(R=k|R > 0)\non\\
&=&\text{Pr}(H=0|T\in \Gamma)\sum_{k=1}^M\text{Pr}(R=k|R > 0)\non\\
&=&\text{Pr}(H=0|T\in \Gamma).\non
\end{eqnarray}\]
Note the notation \(H\) comes from \cite{storey2003positive}, and it should be \(Z\) defined (18.51) in our context.