Ex. 2.7

Ex. 2.7

Suppose we have a sample of \(N\) pairs \(x_i, y_i\) drawn i.i.d. from the distribution characterized as follows:

\[\begin{eqnarray} &&x_i\sim h(x), \text{ the design density}\nonumber\\ &&y_i = f(x_i) + \epsilon_i, f \text{ is the regression function}\nonumber\\ &&\epsilon_i\sim (0, \sigma^2)\ (\text{mean zero, variance } \sigma^2)\nonumber \end{eqnarray}\]

We construct an estimate for \(f\) linear in the \(y_i\),

\[\begin{equation} \label{eq:2-7linear} \hat f(x_0) = \sum_{i=1}^N\ell_i(x_0;\mathcal{X})y_i, \end{equation}\]

where the weights \(\ell_i(x_0;\mathcal{X})\) do not depend on the \(y_i\), but do depend on the entire training sequence of \(x_i\), denoted here by \(\mathcal{X}\).

(a)

Show that linear regression and \(k\)-nearest-neighbor regression are members of this class of estimators. Describe explicitly the weights \(\ell_i(x_0;\mathcal{X})\) in each of those cases.

(b)

Decompose the conditional mean-squared error

\[\begin{equation} E_{\mathcal{Y}|\mathcal{X}}(f(x_0)-\hat f(x_0))^2\nonumber \end{equation}\]

into a conditional squared bias and a conditional variance component. Like \(\mathcal{X}, \mathcal{Y}\) represents the entire training sequence of \(y_i\).

(c)

Decompose the (unconditional) mean-squared error

\[\begin{equation} E_{\mathcal{Y}, \mathcal{X}}(f(x_0)-\hat f(x_0))^2\nonumber \end{equation}\]

into a squared bias and a variance component.

(d)

Establish a relationship between the squared biases and variances in the above two cases.

Remark

A smoother \(\hat f\) is called a linear smoother (see Section 5.4 in the text for more details) if it has the form

\[\begin{equation} {\hat f} = \textbf{S}\textbf{y}.\nonumber \end{equation}\]

Note that the linearity implies that \(\textbf{S}\) does not depend on \(\textbf{y}\). For linear regression, \(\textbf{S} = \textbf{X}(\textbf{X}^T\textbf{X})^{-1}\textbf{X}^T\). As for the bias and variance, we have

\[\begin{eqnarray} \text{Bias}({\hat f}) &=& \textbf{f} - \textbf{S}\textbf{f},\nonumber\\ \text{Cov}({\hat f}) &=&\textbf{S}\text{Cov}(\textbf{y})\textbf{S}^T.\nonumber \end{eqnarray}\]
Soln. 2.7
(a)

For linear regression, we have

\[\begin{equation} \hat f(x_0) = [x_0, 1](\textbf{X}^T\textbf{X})^{-1}\textbf{X}^Ty,\nonumber \end{equation}\]

so that

\[\begin{equation} \ell_i(x_0;\mathcal{X}) = [x_0, 1](\textbf{X}^T\textbf{X})^{-1}\begin{pmatrix} 1 \\ x_i \end{pmatrix}.\nonumber \end{equation}\]

For \(k\)-nearest-neighbor regression, we have

\[\begin{equation} \hat f(x_0) = \frac{1}{k}\sum_{x_i\in N_k(x_0)}y_i,\nonumber \end{equation}\]

where \(N_k(x_0)\) is the neighborhood of \(x_0\) defined by the \(k\) closest points \(x_i\) in the training sample. Therefore,

\[\begin{equation} \ell_i(x_0;\mathcal{X}) = \begin{cases} \frac{1}{k}, & \text{if } x_i \in N_k(x_0)\\ 0, & \text{otherwise.}\nonumber \end{cases} \end{equation}\]
(b)

Note that \(\mathcal{X}\) is fixed and randomness comes from \(\mathcal{Y}\) only. We have

\[\begin{eqnarray} E_{\mathcal{Y}|\mathcal{X}}\left(f(x_0) - \hat f(x_0)\right)^2 &=& f(x_0)^2 - 2f(x_0)E_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0)) + E_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0)^2)\nonumber\\ &=& \left(f(x_0)-E_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0))\right)^2\nonumber\\ && + E_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0)^2) - \left(E_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0))\right)^2\nonumber\\ &=& \text{Bias}_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0))^2 + \text{Var}_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0)).\nonumber \end{eqnarray}\]
(c)

The calculation logic is the same as (b), we have

\[\begin{eqnarray} E_{\mathcal{Y}, \mathcal{X}}\left(f(x_0) - \hat f(x_0)\right)^2 &=& f(x_0)^2 - 2f(x_0)E_{\mathcal{Y}, \mathcal{X}}(\hat f(x_0)) + E_{\mathcal{Y}, \mathcal{X}}(\hat f(x_0)^2)\nonumber\\ &=& \left(f(x_0)-E_{\mathcal{Y}, \mathcal{X}}(\hat f(x_0))\right)^2\nonumber\\ && + E_{\mathcal{Y}, \mathcal{X}}(\hat f(x_0)^2) - \left(E_{\mathcal{Y}, \mathcal{X}}(\hat f(x_0))\right)^2\nonumber\\ &=& \text{Bias}(\hat f(x_0))^2 + \text{Var}(\hat f(x_0)).\nonumber \end{eqnarray}\]
(d)

From (b) we already see that \(Bias_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0))\) can be written as

\[\begin{eqnarray} && f(x_0) - E_{\mathcal{Y}|\mathcal{X}}\hat f(x_0)\nonumber\\ &=& f(x_0) - \sum_{i=1}^NE_{\mathcal{Y}|\mathcal{X}}\ell_i(x_0;\mathcal{X})(f(x_i) + \epsilon_i)\nonumber\\ &=& f(x_0) - \sum_{i=1}^N\ell_i(x_0;\mathcal{X})f(x_i)\ \ \ \ \ \ \ \ \ \label{eq:2-7biasb} \end{eqnarray}\]

Also, we write \(Var_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0))\) as

\[\begin{eqnarray} &&E_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0)^2) - \left(E_{\mathcal{Y}, \mathcal{X}}(\hat f(x_0))\right)^2\nonumber\\ &=& E_{\mathcal{Y}|\mathcal{X}}\left[\sum_{i=1}^N\sum_{j=1}^N\ell_i(x_0;\mathcal{X})\ell_j(x_0;\mathcal{X})(f(x_0)+\epsilon_i)(f(x_0)+\epsilon_j)\right] \nonumber\\ && - \left(\sum_{i=1}^N\ell_i(x_0;\mathcal{X})f(x_i)\right)^2\nonumber\\ &=&\sum_{i=1}^N\sum_{j=1}^N\ell_i(x_0;\mathcal{X})\ell_j(x_0;\mathcal{X})f(x_i)f(x_j)\nonumber\\ && + \sigma^2\sum_{i=1}^N\ell^2_i(x_0;\mathcal{X})\nonumber\\ && - \sum_{i=1}^N\sum_{j=1}^N\ell_i(x_0;\mathcal{X})\ell_j(x_0;\mathcal{X})f(x_i)f(x_j)\nonumber\\ &=&\sigma^2\sum_{i=1}^N\ell^2_i(x_0;\mathcal{X})\nonumber \end{eqnarray}\]

Denote \(S = (\ell_1(x_0;\mathcal{X}), ..., \ell_N(x_0;\mathcal{X}))^T\) and \(f = (f(x_1),...,f(x_N))^T\). By \(\eqref{eq:2-7biasb}\) and the equation above, we have

\[\begin{eqnarray} Bias_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0)) &=& f(x_0) - S^Tf,\nonumber\\ Var_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0)) &=& \sigma^2S^TS.\nonumber \end{eqnarray}\]

Assume that \(SS^T\) is non-singular, note that \(S^TS\) is a scalar, we have

\[\begin{eqnarray} [Bias_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0))]^2 &=& (f(x_0) - S(x_0)^Tf)^T(f(x_0) - S(x_0)^Tf)\nonumber\\ &=&f(x_0)^2 + 2f(x_0)S^Tf - f^TSS^Tf\nonumber\\ &=&f(x_0)^2 + 2f(x_0)S^Tf - f^TSS^TSS^T(SS^T)^{-1}f\nonumber\\ &=&f(x_0)^2 + 2f(x_0)S^Tf - \frac{Var_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0))}{\sigma^2}f^Tf\nonumber\\ &=&f(x_0)^2 + 2f(x_0)\Big(f(x_0)-Bias_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0))\Big)\nonumber\\ && -\frac{f^Tf}{\sigma^2}Var_{\mathcal{Y}|\mathcal{X}}(\hat f(x_0)).\nonumber \end{eqnarray}\]

That is the relationship between the squared biases and variances.

For (c), similar arguments follow by integrating terms above by joint density of \(x_1,...,x_N\), that is, \(h(x_1)\cdots h(x_N)dx_1\cdots dx_N\).