Ex. 13.7

Ex. 13.7

Consider the application of nearest-neighbors to the easy and hard problems in the left panel of Figure 13.5.

(a) Replicate the results in the left panel of Figure 13.5.

(b) Estimate the misclassification errors using fivefold cross-validation, and compare the error rate curves to those in 1.

(c) Consider and ``AIC-like'' penalization of the training set misclassification error. Specifically, add \(2t/N\) to the training set misclassification error, where \(t\) is the approximate number of parameters \(N/r\), \(r\) being the number of nearest-neighbors. Compare plots of the resulting penalized misclassification error to those in 1 and 2. Which method gives a better estimate of the optimal number of nearest-neighbors: cross-validation or AIC?

Soln. 13.7

(a) Please see Figure 1 for a replicate of left panel of Figure 13.5 in the text.

Figure 1: Replicate of Figure 13.5

(b) and (c) Please see Figure 2 for comparison of estimated error rates using cross validation and those from 1. When the number of neighbor \(r\) is small, the AIC penalty \(2/r\) is large, so that AIC estimate is much greater than estimates from other two methods. In our simulation, cross-validation gives a better estimate.

Estimated Error Rates Using CV and AIC-like Penalty

Code
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
import plotly.graph_objects as go


# Prepare data
def generateData(train_size=100, test_size=1000, p=10):
    X_train = np.random.uniform(0, 1, size=(train_size, p))
    X_test = np.random.uniform(0, 1, size=(test_size, p))
    y_train_easy = generateYEasy(X_train)
    y_train_hard = generateYHard(X_train)
    y_test_easy = generateYEasy(X_test)
    y_test_hard = generateYHard(X_test)

    data_easy = {
        'X_train': X_train,
        'y_train': y_train_easy,
        'X_test': X_test,
        'y_test': y_test_easy
    }

    data_hard = {
        'X_train': X_train,
        'y_train': y_train_hard,
        'X_test': X_test,
        'y_test': y_test_hard
    }

    return [data_easy, data_hard]


def generateYEasy(X):
    y = X[:, 0].copy()
    y[y < 0.5] = 0
    y[y > 0.5] = 1
    return y


def generateYHard(X):
    y = X[:, 0].copy()
    for i in range(X.shape[0]):
        prod = 1
        for j in range(3):
            prod *= (X[i, j] - 0.5)
        if prod > 0:
            y[i] = 1
        else:
            y[i] = 0
    return y


# a utility function to calculate error rate
# of predictions
def getErrorRate(a, b):
    return np.sum(a != b) / a.size


# 1. Replicate Figure 13.5
def getErrorsKNN(num_neighbor=None, data=None):
    clf = KNeighborsClassifier(n_neighbors=num_neighbor)
    clf.fit(data['X_train'], data['y_train'])
    y_predict = clf.predict(data['X_test'])

    return getErrorRate(y_predict, data['y_test'])


n_neighbors = np.arange(5, 80, 10)
n_iterations = 10

error_mean_easy_list = []
error_std_easy_list = []
error_mean_hard_list = []
error_std_hard_list = []

for n_neighbor in n_neighbors:
    print('Number of Neighbors is: {}'.format(n_neighbor))
    tmp_errs_easy = []
    tmp_errs_hard = []
    for n_ite in range(n_iterations):
        print('Running {}-th realization...'.format(n_ite+1))
        [data_easy, data_hard] = generateData()
        tmp_errs_easy.append(getErrorsKNN(n_neighbor, data_easy))
        tmp_errs_hard.append(getErrorsKNN(n_neighbor, data_hard))

    error_mean_easy_list.append(np.mean(np.asarray(tmp_errs_easy)))
    error_std_easy_list.append(np.std(np.asarray(tmp_errs_easy)))

    error_mean_hard_list.append(np.mean(np.asarray(tmp_errs_hard)))
    error_std_hard_list.append(np.std(np.asarray(tmp_errs_hard)))


# Create traces
fig = go.Figure()
easy_color = '#eb4034'
hard_color = '#993399'
fig.add_trace(go.Scatter(x=n_neighbors, y=error_mean_easy_list,
                        mode='lines',
                        name='Easy',
                        line_color=easy_color
                        ))

fig.add_trace(go.Scatter(x=n_neighbors, y=np.asarray(error_mean_easy_list)+np.asarray(error_std_easy_list),
                        mode='lines+markers', name='Easy (upper limit)',
                        line_color=easy_color, line={'dash': 'dash'}
                        ))

fig.add_trace(go.Scatter(x=n_neighbors, y=np.asarray(error_mean_easy_list)-np.asarray(error_std_easy_list),
                        mode='lines+markers', name='Easy (lower limit)',
                        line_color=easy_color, line={'dash': 'dash'}
                        ))

fig.add_trace(go.Scatter(x=n_neighbors, y=error_mean_hard_list,
                        mode='lines', name='Hard',
                        line_color=hard_color))

fig.add_trace(go.Scatter(x=n_neighbors, y=np.asarray(error_mean_hard_list)+np.asarray(error_std_hard_list),
                        mode='lines+markers', name='Hard (upper limit)',
                        line_color=hard_color, line={'dash': 'dash'}
                        ))

fig.add_trace(go.Scatter(x=n_neighbors, y=np.asarray(error_mean_hard_list)-np.asarray(error_std_hard_list),
                        mode='lines+markers', name='Hard (lower limit)',
                        line_color=hard_color, line={'dash': 'dash'}
                        ))

fig.update_layout(
    xaxis_title="Number of Neighbors",
    yaxis_title="Misclassification Error",
)

fig.show()


# 2 and 3, five-fold CV and AIC
error_mean_easy_cv_list = []
error_mean_hard_cv_list = []
error_mean_easy_AIC_list = []
error_mean_hard_AIC_list = []

[data_easy, data_hard] = generateData()
for n_neighbor in n_neighbors:
    print('CV=5, Number of Neighbors is: {}'.format(n_neighbor))
    clf = KNeighborsClassifier(n_neighbors=n_neighbor)
    scores_easy = cross_val_score(clf, data_easy['X_train'], data_easy['y_train'], scoring='accuracy', cv=5)
    scores_hard = cross_val_score(clf, data_hard['X_train'], data_hard['y_train'], scoring='accuracy', cv=5)
    error_mean_easy_cv_list.append(1 - np.mean(scores_easy))
    error_mean_easy_AIC_list.append(1 - np.mean(scores_easy) + 2/n_neighbor)
    error_mean_hard_cv_list.append(1 - np.mean(scores_hard))
    error_mean_hard_AIC_list.append(1 - np.mean(scores_hard) + 2/n_neighbor)

fig.add_trace(go.Scatter(x=n_neighbors, y=error_mean_easy_cv_list,
                        mode='lines',
                        name='Easy_CV'
                        ))

fig.add_trace(go.Scatter(x=n_neighbors, y=error_mean_easy_AIC_list,
                        mode='lines',
                        name='Easy_AIC'
                        ))

fig.add_trace(go.Scatter(x=n_neighbors, y=error_mean_hard_cv_list,
                        mode='lines',
                        name='Hard_CV'
                        ))

fig.add_trace(go.Scatter(x=n_neighbors, y=error_mean_hard_AIC_list,
                        mode='lines',
                        name='Hard_AIC'
                        ))

fig.show()