Ex. 8.2

Ex. 8.2

Consider the maximization of the log-likelihood (8.48), over distributions \(\tilde P(\bb{Z}^m)\) such that \(\tilde P(\bb{Z}^m)\ge 0\) and \(\sum_{\bb{Z}^m}\tilde P(\bb{Z}^m) = 1\). Use Lagrange multipliers to show that the solution is the conditional distribution \(\tilde P(\bb{Z}^m) = \text{Pr}(\bb{Z}^m|\bb{Z}, \theta')\), as in (8.49).

Soln. 8.2

We first write

\[\begin{eqnarray} F(\theta', \tilde P) &=& E_{\tilde P}[\ell_0(\theta';\bb{T})] - E_{\tilde P}[\log \tilde P(\bb{Z}^m)]\non\\ &=& \sum_{\bb{Z}^m} \ell_0(\theta';\bb{T})\tilde P(\bb{Z}^m)-\sum_{\bb{Z}^m}\tilde P(\bb{Z}^m)\log \tilde P(\bb{Z}^m).\non \end{eqnarray}\]

With the constraint \(\sum_{\bb{Z}^m}\tilde P(\bb{Z}^m) = 1\), the Lagrange multiplier of \(F(\theta', \tilde P)\) with \(\theta'\) fixed is

\[\begin{equation} L(\tilde P, \lambda) = \sum_{\bb{Z}^m} \ell_0(\theta';\bb{T})\tilde P(\bb{Z}^m)-\sum_{\bb{Z}^m}\tilde P(\bb{Z}^m)\log \tilde P(\bb{Z}^m) - \lambda\left(\sum_{\bb{Z}^m}\tilde P(\bb{Z}^m)-1\right).\non \end{equation}\]

Further we set

\[\begin{equation} \label{eq:ex8-2lag} \frac{\partial L(\tilde P, \lambda)}{\partial \tilde P} = \ell_0(\theta';\bb{T}) - \left(\log \tilde P(\bb{Z}^m) + 1\right) +\lambda =0 \end{equation}\]

so that

\[\begin{equation} \tilde P(\bb{Z}^m) =\exp(\ell_0(\theta';\bb{T}) + \lambda -1).\non \end{equation}\]

Recall the constraint that \(\sum_{\bb{Z}^m}\tilde P(\bb{Z}^m) = 1\), we get

\[\begin{equation} \sum_{\bb{Z}^m}\exp(\ell_0(\theta';\bb{T}) + \lambda -1) =1, \non \end{equation}\]

which yields

\[\begin{equation} \lambda = 1 - \log\left(\text{Pr}(\bb{Z}|\theta')\right).\non \end{equation}\]

Plugging \(\lambda\) above into \(\eqref{eq:ex8-2lag}\) we get

\[\begin{equation} \tilde P(\bb{Z}^m) = \text{Pr}(\bb{Z}^m|\bb{Z}, \theta').\non \end{equation}\]